On the minimum of a polynomial function on a basic closed semialgebraic set and applications

نویسندگان

  • Gabriela Jeronimo
  • Daniel Perrucci
  • Elias P. Tsigaridas
چکیده

We give an explicit upper bound for the algebraic degree and an explicit lower bound for the absolute value of the minimum of a polynomial function on a compact connected component of a basic closed semialgebraic set when this minimum is not zero. As an application, we obtain a lower bound for the separation of two disjoint connected components of basic closed semialgebraic sets, when at least one of them is compact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Symbolic Algorithm to Find the Minimum of a Polynomial Function on a Basic Closed Semialgebraic Set

We consider the problem of computing the minimum of a polynomial function g on a basic closed semialgebraic set E ⊂ R. We present a probabilistic symbolic algorithm to find a finite set of sample points of the subset E of E where the minimum of g is attained, provided that E is non-empty and has at least one compact connected component.

متن کامل

Polynomials non-negative on strips and half-strips

An expression f = σ+ τ(x− x) is an immediate witness to the positivity condition on f . In general, one wants to characterize polynomials f which are positive, or nonnegative, on a semialgebraic set K ⊆ R in terms of sums of squares and the polynomials used to define K. Representation theorems of this type have a long and illustrious history, going back at least to Hilbert. There has been much ...

متن کامل

Convexifying Positive Polynomials and Sums of Squares Approximation

We show that if a polynomial f ∈ R[x1, . . . , xn] is nonnegative on a closed basic semialgebraic set X = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}, where g1, . . . , gr ∈ R[x1, . . . , xn], then f can be approximated uniformly on compact sets by polynomials of the form σ0 + φ(g1)g1 + · · ·+ φ(gr)gr, where σ0 ∈ R[x1, . . . , xn] and φ ∈ R[t] are sums of squares of polynomials. In particular, if X...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013